Chapter 28: Alternating-Current Circuits Thursday November 3rd

·Review of energy and oscillations in LC circuits

Alternating current theory

- •Defⁿ of terms, e.g., rms values
- Resistance
- ·Capacitive reactance
- Inductive reactance
- •Putting it all together LRC circuits
 - ·Voltage/phase relations
 - •Impedance

•Resonance

Reading: up to page 501 in the text book (Ch. 28)

Ch. 28: Electromagnetic oscillations

Voltage (driving term): $V(t) = V_p \sin \omega t$

Current response:

$$I(t) = \frac{V}{R} = \frac{V_P}{R} \sin \omega t$$

For a resistor **ONLY**: Current and voltage in phase

$$\Rightarrow I_{_P} = V_{_P} \ / \ R$$

$$I_{rms} = V_{rms} / R$$

Current response:

$$I(t) = \frac{dQ}{dt} = CV_{P}\frac{d}{dt}(\sin\omega t)$$

$$= \omega CV_P \cos \omega t = \omega CV_P \sin(\omega t + \frac{\pi}{2})$$

$$I(t) = \frac{V_P}{L} \int \sin \omega t \, dt$$
$$= -\frac{V_P}{\omega L} \cos \omega t = \frac{V_P}{\omega L} \sin(\omega t - \frac{\pi}{2})$$

Table 28.1 Amplitude and Phase Relations in Circuit Elements

Circuit Element	Peak Current versus Voltage	Phase Relation
Resistor	$I_{ m p}=rac{V_{ m p}}{R}$	V and I in phase
Capacitor	$I_{\rm p} = \frac{V_{\rm p}}{X_C} = \frac{V_{\rm p}}{1/\omega C}$	<i>I</i> leads <i>V</i> by 90°
Inductor	$I_{\mathrm{p}} = rac{V_{\mathrm{p}}}{X_L} = rac{V_{\mathrm{p}}}{\omega L}$	V leads I by 90°

http://en.wikipedia.org/wiki/Phasor_(sine_waves)

Phasor Diagrams: Adding the Voltages

$$V_{\rm p} = \sqrt{I_{\rm p}R^2 + \left(I_{\rm p}X_{\rm L} - I_{\rm p}X_{\rm C}\right)^2}$$

Modified Ohm's law:

$$\Rightarrow I_{\rm p} = \frac{V_{\rm p}}{\sqrt{R^2 + \left(X_L - X_C\right)^2}} = \frac{V_{\rm p}}{Z}$$

Impedance:
$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 [Units:
ohms]

Phase:
$$\tan \phi = \frac{X_L - X_C}{R} = \frac{\omega L - 1 / \omega C}{R}$$

At resonance, Z = R, and $\phi = 0$ (just like a DC circuit)

Power delivered to the circuit:

$$\langle P \rangle = \frac{1}{2} I_{\rm p} V_{\rm p} \cos \phi = I_{rms} V_{rms} \cos \phi$$