Chapter 28: Alternating-Current Circuits Thursday November $3^{\text {rd }}$

- Review of energy and oscillations in LC circuits
- Alternating current theory
- Defn of terms, e.g., rms values
- Resistance
- Capacitive reactance
-Inductive reactance
-Putting it all together - LRC circuits
- Voltage/phase relations
- Impedance
- Resonance

Reading: up to page 501 in the text book (Ch. 28)

Ch. 28: Electromagnetic oscillations

Ch. 28: Alternating Current

$$
V(t)=V_{P} \sin \left(\omega t+\phi_{V}\right) ; \quad I(t)=I_{P} \sin \left(\omega t+\phi_{I}\right)
$$

Here

Sine curve starts at $\omega t=-\pi / 6$ or -30°

Voltage completes Angular frequency: a full cycle when ωt advances by $2 \pi . \quad \omega=2 \pi f$

$$
\omega=2 \pi f
$$

In this example:
$\phi_{V}=+\pi / 6$ or 30°
Root-Mean-Square:

$$
\begin{aligned}
& V_{r m s}=\frac{V_{P}}{\sqrt{2}} \\
& I_{r m s}=\frac{I_{P}}{\sqrt{2}}
\end{aligned}
$$

AC circuits: the resistive term

Voltage (driving term):

$$
V(t)=V_{P} \sin \omega t
$$

Current response:

$$
I(t)=\frac{V}{R}=\frac{V_{P}}{R} \sin \omega t
$$

For a resistor ONLY:
Current and voltage in phase

$$
\begin{aligned}
\Rightarrow & I_{P}=V_{P} / R \\
& I_{r m s}=V_{r m s} / R
\end{aligned}
$$

AC circuits: the capacitive term

Current response:

$$
\begin{aligned}
& I(t)=\frac{d Q}{d t}=C V_{P} \frac{d}{d t}(\sin \omega t) \\
& =\omega C V_{P} \cos \omega t=\omega C V_{P} \sin \left(\omega t+\frac{\pi}{2}\right)
\end{aligned}
$$

AC circuits: the capacitive term

Current response:

$$
I(t)=\omega C V_{P} \sin \left(\omega t+\frac{\pi}{2}\right) \quad I_{P}=\frac{V_{P}}{1 / \omega C}=\frac{V_{P}}{X_{C}}
$$

Current leads voltage by 90°

$$
\text { Capacitive reactance: } X_{C}=1 / \omega C \quad \text { (units }-\Omega \text {) }
$$

AC circuits: the inductive term

Current (driving term):
$V_{L}=-L d I / d t=-V_{P} \sin \omega t$
Voltage peaks $1 / 4$ cycle before current
$V_{P} \mid-\infty$
I_{P}

$I(t)$

Current response:

$$
\begin{aligned}
& I(t)=\frac{V_{P}}{L} \int \sin \omega t d t \\
& =-\frac{V_{P}}{\omega L} \cos \omega t=\frac{V_{P}}{\omega L} \sin \left(\omega t-\frac{\pi}{2}\right)
\end{aligned}
$$

AC circuits: the inductive term

Current (driving term):
$V_{L}=-L d I / d t=-V_{P} \sin \omega t$
Voltage peaks $1 / 4$ cycle before current

Voltage leads current by $\mathbf{9 0}^{\circ}$

$$
I_{P}=\frac{V_{P}}{\omega L}=\frac{V_{P}}{X_{L}}
$$

Inductive reactance: $X_{L}=\omega L \quad$ (units - Ω)

Summary

Table 28.1 Amplitude and Phase Relations in Circuit Elements

Circuit Element	Peak Current versus Voltage	Phase Relation
Resistor	$I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{R}$	V and I in phase
Capacitor	$I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{X_{C}}=\frac{V_{\mathrm{p}}}{1 / \omega C}$	I leads V by 90°
Inductor	$I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{X_{L}}=\frac{V_{\mathrm{p}}}{\omega L}$	V leads I by 90°

Phasor Diagrams

http://en.wikipedia.org/wiki/Phasor_(sine_waves)

Phasor Diagrams: Adding the Voltages

Phasor Diagrams: Adding the Voltages

$$
V_{\mathrm{p}}=\sqrt{I_{\mathrm{p}} R^{2}+\left(I_{\mathrm{p}} X_{L}-I_{\mathrm{p}} X_{C}\right)^{2}}
$$

Modified Ohm's law:

$$
\Rightarrow I_{\mathrm{p}}=\frac{V_{\mathrm{p}}}{\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}}=\frac{V_{\mathrm{p}}}{Z}
$$

Impedance: $\quad Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}$
$\left[\begin{array}{l}\text { Units: } \\ \text { ohms }\end{array}\right]$
Phase:

$$
\tan \phi=\frac{X_{L}-X_{C}}{R}=\frac{\omega L-1 / \omega C}{R}
$$

At resonance, $Z=R$, and $\phi=0$ (just like a DC circuit)

Power delivered to the circuit:

$$
\langle P\rangle=\frac{1}{2} I_{\mathrm{p}} V_{\mathrm{p}} \cos \phi=I_{r m s} V_{r m s} \cos \phi
$$

